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Notation

If κ is an infinite cardinal and Q,R and S are collections of
subsets of κ then the partition relation

Q→ (R,S)n

holds iff for each X ∈Q and for each f : [X ]n→ 2 either
f ([Y ]n) = {0} for some Y ∈ R or f ([Z ]n) = {1} for some Z ∈ S.
If R = S then we write Q→ (R)n

2.



Results for ultrafiltres

Ramsey (1930)
for non-principal ultrafiltres on ω

U→ (U)2
2

Such ultrafiltres are called "Ramsey" (Galvin, around 1968)



Results for ultrafiltres

Baumgartner and Taylor (1978)

U→ (U,ω)2

and
U→ (U,4)3



Results for ultrafiltres

Sierpiński (1933)
2ℵ0 6→ (ℵ1)

2
2



Results for ideals

Duschnik and Miller (1941)
If κ is an infinite cardinal then

κ → (κ,ω)2

Erdös - Rado (1956)
For κ - regular

κ → (κ,ω +1)

Hajnal (1960)
If 2ℵ0 = ℵ1 then

ω1 6→ (ω1,ω +2)2



Our goal

Theorem
For each λ < µ < κ such that κ,µ are regular numbers the
following statement is true

κ → (µ)2
λ



Strong sequences

Let T be an infinite set. Denote the Cantor cube by

DT = {p : p : T →{0,1}}.

For s ⊂ T , i : s→{0,1} it will be used the following notation

H i
s = {p ∈ DT : p|s = i}.

Efimov defined strong sequences in the subbase {H i
{α} : α ∈ T}

of the Cantor cube and proved the following



Strong sequences

Theorem (Efimov)
Let κ be a regular, uncountable cardinal number.
In the space DT there is not a strong sequence

({H i
{α} : α ∈ vξ},{H i

{β} : β ∈ wξ}) ; ξ < κ

such that |wξ |< κ and |vξ |< ω for each ξ < κ.



Strong sequences - Turzański results

Let X be a set, and B ⊂ P(X ) be a family of non-empty subsets
of X closed with respect to finite intersections. Let S be a finite
subfamily contained in B. A pair (S,H), where H ⊆ B, will be
called connected if S∪H is centered.

Definition (Turzański)

A sequence (Sφ ,Hφ ); φ < α consisting of connected pairs is
called a strong sequence if Sλ ∪Hφ is not centered whenever
λ > φ .
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Strong sequences - Turzański results

Theorem (Turzański (1992))

If for B ⊂ P(X ) there exists a strong sequence
S = (Sφ ,Hφ );φ < (κλ )+ such that |Hφ | ≤ κ for each φ < (κλ )+

then there exists a strong sequence (Sφ ,Tφ );φ < λ+, where
|Tφ |< ω for each φ < λ+



Strong sequences in sets with relation

Let (X , r) be a set with relation r.

We say that a and b are comparable if
(a,b) ∈ r or (b,a) ∈ r .
We say that a and b are compatible if there exists c such
that

(a,c) ∈ r and (b,c) ∈ r .

(We say then that a and b have a bound).
If each of two elements in a set A⊂ X are compatible, then
A is a directed set.
A set A is κ- directed if every subset of X of cardinality
less than κ has a bound, i.e. for each B ⊂ X with |B|< κ

there exists a ∈ A such that (b,a) ∈ r for all b ∈ B.
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Strong sequences on sets with relations

Definition
Let (X , r) be a set with relation r.
A sequence (Sφ ,Hφ );φ < α where Sφ ,Hφ ⊂ X and Sφ is finite is
called a strong sequence if
1o Sφ ∪Hφ is ω-directed
2o Sβ ∪Hφ is not ω-directed for β > φ .



Main results

Theorem
Let κ,µ where µ < κ be regular numbers. If there exists a
strong sequences (Sα ,Hα)α<κ with |Hα | ≤ λ for λ < κ, then
there exists a strong sequence (Sα ,Tα)α<µ with |Tα |< ω.

is equvalent to

Theorem
For each λ < µ < κ such that κ,µ are regular numbers the
following statement is true

κ → (µ)2
λ



Main results

Theorem
Let κ,µ where µ < κ be regular numbers. If there exists a
strong sequences (Sα ,Hα)α<κ with |Hα | ≤ λ for λ < κ, then
there exists a strong sequence (Sα ,Tα)α<µ with |Tα |< ω.

is equvalent to

Theorem
For each λ < µ < κ such that κ,µ are regular numbers the
following statement is true

κ → (µ)2
λ



Theorem
If λ is cardinal number, then

2λ 6→ (λ+)2
2



Theorem
If λ is cardinal number, then

2λ 6→ (λ+)2
2

Proof (compare: Protasov)
1) for λ = ℵ0 we have Sierpiński theorem

2ℵ0 6→ (ℵ1)
2
2.

2) for arbitrary λ .
Let us suppose that 2λ → (λ+)2

2. It means that for any partition

[2λ ]2 =
⋃
{Aα : α < λ}

at least one Aα has cardinality λ+.



Proof (cont.)
Let

2λ = {f : f : λ →{0,1}}

and let f1 � f2 iff f1(α) = 0 and f2(α) = 1 for all
α = min{β < λ : f1(β ) 6= f2(β )}.
We can define

Aα = {ξ : α = min{β < λ : fξ (β ) 6= fξ+1(β )}}.

Aα contains only functions which form chain in the sense of �
and let us consider the function F : λ → λ+ such that
F (α) = minAα for Aα 6= /0 and F (α) = 0 for Aα = /0. Let us notice
that sup{F (α) : α < λ}= λ+. But λ+ is regular. Contradiction.



Corollaries

Corollary
If X is a regular space, then

d(X )≤ χ(X )c(X).

Corollary
If X is a regular space, then

w(X )≤ χ(X )c(X)
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Corollaries

Corollary
If X ,Y are topological spaces. then

c(X ×Y )≤ 2c(X)+c(Y ).

Corollary
If X is a Hausdorff space then

|X | ≤ 2χ(X)+c(X)
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Lemma
If for A⊂ P(X ) there exists a strong sequence (Sα ,Hα)α<(2λ )+

such that |Hα | ≤ 2λ for each α < (2λ )+. then there exists a
family A⊂ P(X ) of cardinality λ+ consisting of pairwise disjoint
sets.



Sketch of the proof (corollary 4)
Let λ = χ(X )+c(X ). Let us assume that |X |> 2λ .
We can construct a sequence {xα ∈ X : α < (2λ )+} and a
strong sequence (Uα ,Bα)α<(2λ )+ with properties
1) Uα -open set such that xα ∈ Uα

2) Bα - local base in point xα

3) |Bα | ≤ 2λ .
According to previous lemma we obtain a family consisting of
pairwise disjoint sets of cardinality λ+. Contradiction, because
λ ≥ c(X ).
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M. TURZAŃSKI, Cantor cubes: chain conditions, Prace
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M. TURZAŃSKI, Cantor cubes: chain conditions, Prace
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